NS2 proteases from hepatitis C virus and related hepaciviruses share composite active sites and previously unrecognized intrinsic proteolytic activities
نویسندگان
چکیده
Over the recent years, several homologues with varying degrees of genetic relatedness to hepatitis C virus (HCV) have been identified in a wide range of mammalian species. HCV infectious life cycle relies on a first critical proteolytic event of its single polyprotein, which is carried out by nonstructural protein 2 (NS2) and allows replicase assembly and genome replication. In this study, we characterized and evaluated the conservation of the proteolytic mode of action and regulatory mechanisms of NS2 across HCV and animal hepaciviruses. We first demonstrated that NS2 from equine, bat, rodent, New and Old World primate hepaciviruses also are cysteine proteases. Using tagged viral protein precursors and catalytic triad mutants, NS2 of equine NPHV and simian GBV-B, which are the most closely and distantly related viruses to HCV, respectively, were shown to function, like HCV NS2 as dimeric proteases with two composite active sites. Consistent with the reported essential role for NS3 N-terminal domain (NS3N) as HCV NS2 protease cofactor via NS3N key hydrophobic surface patch, we showed by gain/loss of function mutagenesis studies that some heterologous hepacivirus NS3N may act as cofactors for HCV NS2 provided that HCV-like hydrophobic residues are conserved. Unprecedently, however, we also observed efficient intrinsic proteolytic activity of NS2 protease in the absence of NS3 moiety in the context of C-terminal tag fusions via flexible linkers both in transiently transfected cells for all hepaciviruses studied and in the context of HCV dicistronic full-length genomes. These findings suggest that NS3N acts as a regulatory rather than essential cofactor for hepacivirus NS2 protease. Overall, unique features of NS2 including enzymatic function as dimers with two composite active sites and additional NS3-independent proteolytic activity are conserved across hepaciviruses regardless of their genetic distances, highlighting their functional significance in hepacivirus life cycle.
منابع مشابه
NS2 proteins of GB virus B and hepatitis C virus share common protease activities and membrane topologies.
UNLABELLED GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigate...
متن کاملHepatitis C virus NS2 is a protease stimulated by cofactor domains in NS3.
Chronic infection with hepatitis C virus (HCV) affects 130 million people worldwide and is a major cause of liver cirrhosis and liver cancer. After translation of the HCV RNA genome into a polyprotein, 2 viral proteases process its non-structural protein (NS) region. While the essential chymotrypsin-like serine protease NS3-4A mediates all cleavages downstream of NS3, the NS2-3 cysteine proteas...
متن کاملImmunogenicity Evaluation of a DNA Vaccine Expressing the Hepatitis C Virus Non-Structural Protein 2 Gene in C57BL/6 Mice
Backgrounds: Most of the hepatitis C virus (HCV) infections elicit poor immune responses and 75% to 85% of cases become chronic therefore, the development of an effective vaccine against HCV is of paramount importance. In this study, we aimed to evaluate co-administration of HCV non-Structural Protein 2 and IL-12 DNA vaccines in C57BL/6 mice. Methods: A plasmid encoding full-length HCV NS2 prot...
متن کاملThe Hepatitis C Virus Nonstructural Protein 2 (NS2): An Up-and-Coming Antiviral Drug Target
Infection with Hepatitis C Virus (HCV) continues to be a major global health problem. To overcome the limitations of current therapies using interferon-α in combination with ribavirin, there is a need to develop drugs that specifically block viral proteins. Highly efficient protease and polymerase inhibitors are currently undergoing clinical testing and will become available in the next few yea...
متن کاملHepatitis G virus encodes protease activities which can effect processing of the virus putative nonstructural proteins.
The genome of a recently identified virus, hepatitis G virus (HGV), shows considerable homology to hepatitis C virus (HCV). Two HGV proteases similar to nonstructural proteins NS2 and NS3 of HCV were identified, and their cleavage site specificity was investigated. Amino acids essential for the protease activities were determined by mutation analysis. NS4A of HGV was demonstrated to be a cofact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2018